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LANDAU DAMPING IN A RELATIVISTIC PLASMA* 

Behram Kurpnoglu 

Center for Theoretical Studies 

University of Miami, Coral Gables, Florida 

It is shown that over a time interval T = ,q-q the phenomenon 
of Landau damping, for electron mass small compared to KT, can 

induce a cooling mechanism in a relativistic plasma by an 

"amplification" of longitudinal as well as of transverse waves. 

*This research is supported by United States Air Force Contract 

No. AF 49-(638)-1260 and National Aeronautics and Space 
Administration Contract No. NASA NGR 10-007-010. 
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Introduction 

In a plasma,energy losses by a beam of particles traversing 

it can be put into two categories: (i) Incoherent losses or 

microscopic losses arising from close collision of ions and 

electrons. Such losses occur 

rD = (7) whose axis of 

& particle; (ii) coherent or 

KT 1/2 

47me 

inside a cylinder (of Debye radius 

symmetry coincides with the path of 

macroscopic losses arising from 

an interplay of collective oscillations and particles outside 

the Debye cylinder. 

For a relativistic (rarefied) plasma, the cross-section 

for the direct Coulomb interaction of charged particles 

and coherent energy losses eventually take over. For a non- 

magnetized plasma the excitation of longitudinal plasma waves 

decreases 

constitutesthe main mechanism for almost all coherent losses 

suffered by a beam of particles. 

The phase velocity of a longitudinal plasma wave, with a 

first order relativistic correction, is 

where 

k = -  A 2rr ' =SJ(~?~), fig) = Vr = mean thermal velocity 

of the plasma electrons. 
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The basic restriction on the emission of a plasma wave 

is contained in the "plasma propagator" defined by 

where 

1 
2 - 5  E = y m c ,  2 p - y m x ,  y = ( l - = )  V 0 

C M 

The second term generates the Landau damping of the plasma 

waves when they are emitted, v i z . ,  

which can be written as 

W = ~ V C O S ~  . 

Thus the necessary condition for the emission of plasma waves 

is 

v > o ,  U u = E  03 

If the particle velocity v is less than d 3  Vr then the 

necessary condition (1.4) cannot be satisfied,and in this case 
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most of the energy losses experienced by the particles are 

due to close collisions (incoherent losses). If particle 
velocity v exceeds& VT the condition (1.4) is satisfied 
for certain range of wave lengths k, and coherent losses can 
occur. However,we shall see presently that the nature of 

these losses,i,e. from particles to waves or from waves to 

particles will, for relativistic plasmas, depend on the energy 

of the particles. 

2n 

11. Relativistic Landau Damping; 

Landau damping is a property of the collisionless plasma 

and to that extent it is rather sensitive to the form of velocity- 

distribution function. More importantly the damping seems to 

assume a basic role in differentiating between short and long 

time processes in the plasma. 

in terms of time does, naturally, necessitate a careful analysis of 

the linear and nonlinear nature of plasma oscillations. 

reasonable limit on the time interval, during which a plasma behaves 

linearly, can be obtained, 

equation for a relativistic plasma(’) (in k space), 

A discussion of plasma phenomena 

A 

Let us consider the nonlinear integral 

(11.1) 

B. Kursunoglu, Nuclear Fusion 1, 213-223 (1961). 
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where 

4nie kbpv-kvP~ p(krp) d4p 
k ka a 

mc 

is the Fourier transform of the electromagnetic field in the 

plasma and 

is the relativistic angular momentum operator. 

We are using relativistic &vectors according to 

ka = g ab kb, kaka = k4 2 - kl 2 - k2 2 - k3 2 , 

and arguments of f and p are ‘+-dimensional vectors. 

In (11.1) a definite direction of time flow is chosen 
2 2 2  by assuming that E = cp4 = cJ(p +m c ) has a small positive 

imaginary part (see 1.2) . However, in the case of nonlinear 
theory, in view of an interaction between plasma oscillations, 

the relationship of particle velocities to phase velocity of 

plasma oscillations is not well defined. The two cannot be ex- 

pected to be in phase and hence flow of energy from one to the 

other has a random behaviour in a nonlinear state. Therefore, 

on this basis Landau damping cannot occur. However for shorter 

time intervals, namely j u s t  before the appearance of nonlinear 

(11.2) 

(11.3) 
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effects ,  the plasma as a l inear  system can experience a Landau 

damping . 
The equation (11.1) can be writ ten as 

where - M and 3 are  angular momentum vector operators corresponding 

t o  (II03),and CD = ck4. 

(11.4) (or the l inearized r e l a t i v i s t i c  co l l i s ion less  Boltzmann 

equation) provided i n  the r e s t  frame of the pa r t i c l e  (i .e.  rsI) p = 0, 

3 = 0) we impose the condition 

One can apply perturbation theory t o  

- 

1 Putting p4 = mc we may write f o r  the time in t e rva l  7 = c u ,  
over which the  l i nea r  behaviour can be assumed, the expression 

T h i s  provides, f o r  a r e l a t i v i s t i c  plasma, a reasonable c r i t e r i o n  

f o r  the existence of favourable s t a t e s  i n  which Landau damping 

can occur. 

t he  direct ion of the damping, i .e.  energy absorption by the  

p a r t i c l e  or  by the wave. 

The condition (11.6) does not, of course, determine 

(11.4) 

(11.6) 
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For large electric fields the electrons have available a 

much smaller time interval than ions to absorb from or to lose 

energy to the wave. 

Now to calculate the actual damping we resort to linearized 

theory (as was already done in reference 1) and obtain the dis- 

persion relations 

2 2 

9 
2 bI 

refering to transverse and longitudinal waves, respectively. 

The dispersion integrals are given by 

I o = I  + i I L ,  P 

where 

2 2  
IP du, Z = aJ(l+q -u ), 

2 mc . = E =  phase velocity of the wave, a = ~ ' p  , 

(11.7) 

(11.8) 
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The term IL is the cause of Landau damping. 

IL in (11.7) is given by 

The integral 
1 

where 

co The damping of a plasma wave of velocity 2) = by a 

relativistic electron with velocity v depends on the form of 

IL given by (11.9). It can be written as 

where 

(11.10) 

2 E = ye mc 
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Thus the damping of a plasma wave i s  proportional t o  the 

density of plasma electrons, possessing a t  u = v (or p = l), 

according t o  a r e l a t i v i s t i c  Maxwell dis t r ibut ion,  an energy 

E = ye mc‘ and velocity equal t o  the velocity of the wave. 

T h i s  i s  i n  exact correspondence with the absorption mechanisms 

pointed out above. 

absorption of energy by the electron from a plasma wave decreases 

w i t h  an increase of electron energy. 

However, it i s  important t o  note that 

A s  an i l l u s t r a t i o n ,  l e t  us consider the  extreme case 

where the r e s t  mass of the electron i s  small compared t o  KT. 

this case the r e l a t i v i s t i c  dispersion in t eg ra l  (see r e f .  1) 

f o r  longitudinal waves becomes 

In 

where the imaginary p a r t  refers  t o  Landau damping i n  t h i s  

extreme case. 

we obtain the r e su l t  

Using (11.11) i n  the  dispersion re la t ion  (11.8) 

2 = coth [t (1 + $411 . 
u 2u C 

P 

(11.11) 

(11.12) 

From (11.12) it follows that longitudinal wave velocity exceeds 

the  velocity of l i gh t .  

reverse of Landau damping occurs: 

from the electron and reaches phase ve loc i t ies  exceeding that 

Therefore, i n  this extreme case, the 

the wave absorbs energy 
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of light. T h i s  means that Landau damping in the extreme 

relativistic state provides a mechanism for cooling the plasma 

as contrasted with the heating effect that it provides in a 

warm plasma. If the imaginary part of (11.11) were omitted 

then one would obtain the relation (II.l2),with tanh instead 

of coth. In this case 2) is always less than c .  

On the basis of this extreme relativistic case the dis- 

persion relation for transverse waves has a similar structure 

to that of longitudinal waves. The transverse dispersion 

integral I1 together with transverse dispersion relation leads 

to 

1 

1 

one of its solutions being 2) = c. For all other solutions, 2) > c .  

The energy absorbed by the waves may be dissipated amongst 

the waves themselves, enhancing the mechanism of waves scattering 

from one another. 

which does not allow Landau damping ( 2 )  after the time 7 .  

The plasma thus assumes its nonlinear behaviour 

For a detailed discussion of Landau damping in nonrelativistic 

plasma,see Chapter 7 
H. Stix, 1962, McGraw-Hill. 

of THE THEORY OF PLASMA WAVES, by Thomas 


